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ABSTRACT 
The design of water distribution networks is aiming at a good compromise between reliability and costs. Because 

such networks commonly serve for several objectives, multi-objective optimization approaches are the appropriate 

methods for this purpose. In this paper, the results of a simulation-based multi-objective optimization (MO-CMA-

ES-EP) approach which couples a multi-objective covariance matrix adaptation evolution strategy (MO-CMA-ES) 

with Epanet are presented. The new method was tested with two published benchmark cases, the two-loop network 

and the Hanoi water network. The objective functions used in this study are aiming at the minimization of initial 

capital cost and maximization of network resilience. The results reveal that MO-CMA-ES-EP is able to determine 

the true Pareto optimal front of cost and network resilience index which serves as a tool for decision makers of water 

networks design. 

KEYWORDS: optimal design, water distribution network, multi-objective optimization, simulation–based 

optimization. 

 

     INTRODUCTION 
A water distribution network (WDN) represents one of the most important infrastructures in urban and regional 

economic development. An adequate network layout, the selection of components and the dimensioning of the 

distribution system are amongst the major challenges when setting up a water supply network. Calculating the 

hydraulic properties for each network configuration is commonly considered as "the balancing" between flows, head 

losses, velocities and pressures.   

For optimal design of a water distribution network most of studies try to minimize cost by reducing pipe diameter 

while reliability was quantified as a constraint.  Consequently, such network may not able to provide sufficient 

demand at some nodes if there is a local failure or a demand change occurs. Therefore, the reliability of WDN has 

received more attention. The reliability of a WDN can be understood as the ability of the network, which providing 

adequate demands both normal and abnormal condition (Farmani et al., 2006).  

Generally, an increasing network reliability will cause an increase in cost. In this case, multi-objective optimization 

is useful for quantifying the relationship between the conflicting objectives, i.e. minimize cost function and 

maximize network reliability which is referred to as Pareto front. 

Traditional practice still employs a trial and error approach for minimizing the design parameters (such as pipe 

diameters, suitable netowrk layout) while satisfying all pre-defined requirements (for example, required nodal head, 

flow velocity, water quality). This approach is very time consuming and depends mainly on designer’s experiment. 

In order to tackle this limits many optimization models have been developed to search for the optiaml/near optimal 

solution of a water distribution network,  for instant, genetic algorithms - GAs (Simson et al., 1994), ant-colony 

optimization algorithm – ACOA (Afshar, 2007), simulated annealing – SA (Tospornsampan et al., 2007), 

differential evolution – DE (Suribabu, 2010), particle swarm optimization - PSO (Suribabu & Neelakantan, 2006), 

harmony search - HS (Geem et al., 2006). Studies show that these algorithms are able to produce overwhelming 

results in terms of robustness, flexibility, general application, and capability of solving large combinatorial 
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problems. However, each optimization algorithm possesses its own set of controlled parameters that affects its 

performance in terms of solution quality and processing time. 

Recently, simulation–based multi-objective optimization models that link a simulation model with a nonlinear 

optimization algorithm, has been developed as an efficient method for solving WDN design problems. Farmani et al. 

(2006) applied non-dominated sorting genetic algorithm (NSGA II) coupling with Epanet for solving multi-

objectives including minimizing total cost, maximizing minimum resilience index and minimizing maximum water 

age on the Anytown water distribution network. Vasan et al. (2010) introduced the DENET model which applied 

differential evolution to Epanet for solving multi-objective optimization problems of the New York water network 

including cost function and network resilience based on the work of Prasad and Park (2004). Chandramouli et al. 

(2011) developed a combination of genetic algorithms and Epanet to optimize cost and network reliability of the 

benchmark two loop network using fuzzy concepts based on the residual pressure available at junction nodes. Baños 

et al. (2011) used the Strength Pareto Evolutionary Algorithm 2 (SPEA 2) and coupled it with Epanet to solve 

multio-bjective optimization problems including cost function and three different resilience indexes: resilience index, 

network resilience, and a modified resilience index which based on resilience index in order to determine whether the 

solutions become infeasible under a large number of over demand scenarios.     

In this paper, a simulation–based multi-objective optimization framework which combines the Epanet (Rossman, 

2000) with the multi-objective covariance matrix adaptation evolution strategy (MO-CMA-ES) developed by Igel et 

al. (2007) for solving mono and multi-criteria optimization problems (Figure 1) is presented. Considering the trade-

off between initially capital cost and network reliability the resulting simulation–based multi-objective optimization 

model has been developed and analyzed using two published benchmark cases - the two loop network proposed by 

Alperovits & Shamir (1977) and the Hanoi network proposed by Fujiwara and Khang (1990). 

 

MATERIALS AND METHODS 
1. Formulation of the multi-objective problem 

When designing a water distribution network, a wide range of concerns may have to be considered. During 

operation, a WDN can suffer the internal hydraulic surplus, even if some segments are out of service caused by a 

failure in the network. Thus, the design of the WDN considers in this study an initial cost function and network 

reliability. The network cost is minimized as:  





np

1i
ii )D(C.LminSTMinimizeCO

 

                                  (1) 

COST: total initial capital cost 

 Li: length of pipes ith 

 C(Di): unit length cost of candidate pipe diameter Di 

 np: number of pipes in the network 

There are many alternatives to define the network reliability, however, most of them basically derive from resilience 

index definition. The resilience index (Ir ) of a network was introduced by Todini (2000) based on concept that the 

power input into a network is equal to the power lost internally to tackle the friction and the power that is delivered 

at demand nodes, and its form is given below: 
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qj: demand at node j 

hj and  hj
*: actual head and required head at which qj is supplied 

nn, nr and npu: number of nodes, number of reservoirs and number of pumps 

 Qk, Hk: flow and pressure head, respectively, corresponding to each reservoir node k.  

Qp, Hp: power and head supplied by pump p, respectively 
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Prasad and Park (2004) found that though maximization of the resilience index which can be achieved by an 

increase of head surplus or power at any junction node, the effect of redundancy is not reflected. Consequently, a 

reliability network, called network resilience (In), has been proposed, that combines the effect of both surplus power 

and reliable loops. The surplus power at any node j is given by:  

 
 *

jjjj hhq.P  
        (3) 

Reliable loops can be ensured, if the pipes connected to a node are not widely varying in diameter. The general form 

is given by: 
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npj is the number of pipes connected to node j 

The combined effect of both surplus power and nodal uniformity of node j, called weighted surplus power, is 

expressed as:  

  jjj PCX 
          

This equation may be normalized by dividing with maximum surplus power to get network resilience as: 
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According to theory it is 0  ≤ In ≤ 1  but in real world application, the value of In can not reach one due to two 

problems: (1) the inequality between supplied heads and actual demand heads and (2) the diversity of pipe diameters 

in a network. An advantage of the use of network resilience (In) as an objective instead of the resilience index is that 

it produces more robust designs and clearly meets reliable loops of equally pipe sizes by penalizing sudden changes 

in pipe diameter (Raad et al., 2009). In addition, with a more complex water distribution network, network resilience 

responds slightly better than resilience index (Banos et al., 2011). Consequently, network resilience index is used in 

this paper as the second objective function for the water distribution network design: 

Maximize Reliability =  Max(In)      (7) 
In general, the design of a WDN implies constraints for the decision variables as given below: 

Bounds on pipe diameters, Di : 

Di   D   (D denotes the set of commercial available diameter set).   (8) 

 Nodal pressure head bounds: 

  Hj
min ≤ Hj ≤  Hj

max                 (9) 

Bounds on water velocity in the pipe: 

  Vi
min ≤ Vi ≤  Vi

max                 (10) 

The node flow continuity relationship must be satisfied at all sources and demand nodes:  

   
j_to_connected_x

jx 0qQ ,  for all demand nodes     (11) 

The loop head loss relationship must be satisfied for all loops of the network: 

  0h
loop

x  ,   for all loops      (12) 

2. Methodlogy  

2.1. Outline of the proposed method 

(4) 

(5) 

(6) 
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Based on the general structure of simulation-based optimization (Mays, 2000), a novel simulation-based 

optimization approach, MO-CMA-ES-EP, has been developed and verified (Figure 1). The approach couples a 

hydraulic model (Epanet) with the covariance matrix adaptation evolution strategy (CMA-ES). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1: Structure of simulation-based optimization MO-CMA-ES-EP model 

The general principle of the new technique can be described as follows: objective functions associated with a range 

of decision variables, constraints and other parameters will be mathematically interpreted in the interface module. 

The set of initial decision variables, which are arbitrarily assigned using optimization model, is firstly denormalized 

and transferred to the Epanet. Epanet solves the hydraulic processes based on the laws of conservation of mass and 

energy and then produces the hydraulic parameter values such as discharge, flow velocities, head losses in pipes, 

nodal heads (or pressures) and so on. These values are then transferred back to the optimization mode and to be 

checked in terms of given constraints and then, at the end of an iteration, objective function(s) can be estimated. The 

forth and back transference of these decision variables and parameters between these two modes is done through the 

interface module (Epanet Tookit) programmed in Matlab language. Whenever there is a violation of any given 

constraint (for instance, minimum required nodal pressures, limits of velocity, design parameters, constraint related 

to optimal layout, etc…), the penalty function will be added to the objective function value. By comparing to the 

previous objective value, the decision variables are automatically adjusted afterwards to move to a better solution. 

The process continues until any defined stop criterion is met. Finally, the optimal decision variables for designing 

PWDN will be selected which must satisfy all given constraints.  

2.1. Epanet toolkit 

The epanet toolkit is a dynamic link library (DLL) of functions which connecting a programming language that can 

call functions with a windows DLL to the solver hydraulic software Epanet. These functions can read all 

characteristics of a water network described in a suitable format file and write results in an output file as well 

(Eliades, 2009).  
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2.2. Multi-objective covariance matrix adaptation evolution strategy (MO-CMA-ES) 

The MO-CMA-ES, was developed by Igel et al. (2007). This approach is a combination between the strategy 

parameter adaptation and multi-objective selection mechanism which is based on non-dominated sorting approach 

(Deb et al., 2000). The major working principles of the approaches are to force the solutions toward the Pareto 

optimal front which includes trade-offs solutions between objectives and to maintain the diversity among solutions 

in the Pareto front. 

By using the concept of Pareto efficiency, accordingly, any two solutions x1 and x2 may have one of two 

possibilities: one dominating the other, or neither dominating the other. A solution, for instant x1, is considered to 

dominate the other solution, x2, if both the following conditions are satisfied (Prasad and Park, 2004): 

(i) The solution x1 is no worse than x2 in all objectives, and 

(ii) The solution x1 is thoroughly better than x2 in at least one objective. 

If there is any condition violated, x1 is considered to be dominated solution, otherwise x1 is a non-dominated solution 

2.3. Box constraint handling method associated with MO-CMA-ES 

The box constraint handling is associated with the algorithm in order to guarantee that each evaluated solution must 

lie within feasible space (Xf). The feasible search space is a hypercube defined by the lower and upper boundary 

values for each decision variable. The algorithm influences individually the computation of the solutions and 

requires the steps as follows (Hansen et al., 2008): 

(i) An infeasible solution x, from the infeasible search space (X) can be mapped to the nearest feasible point 

(feasible(x)) in feasible search space (Xf) in the following way in the handling box constraint: 

      )x),x,xmin(max(),...,x),x,x(min(max()x(feasible u
n

l
nn

u
1

l
11   with 

nRx       (13) 

Hence, the feasible solution is evaluated itself and the infeasible is evaluated on the boundary of the feasible space. 

The new feasible solution is then used for the evaluation on objective function and for computing a penalty function.  

(ii) A penalty function is added objective function penalizing infeasible solutions. In this study, to save 

computational time, the Squared Euclidean death penalty of the infeasible candidates computed directly by (Eq.14) 

is used in the MO-CMA-ES: 
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where the penalty factor  and the offset  will be experientially chosen. 

RESULTS AND DISCUSSION 
1. Case study 1: Two – loop network  

The network was the first introduced by Alperovits and Shamir (1977) which encompasses 8 pipes, 6 junction nodes 

and is supplied by a single fixed head reservoir R1 (Figure 2). The pipes in the network are all 1000m long and a 

Hazen – William friction factor of CH-W = 130 is used as the same other studies before for the sake of comparison. 

The minimum required pressure for all junction nodes are equally 30 m.  
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Figure 2: Two - loop benchmark network 

Decision variables are the diameters of the eight pipes. Each pipe diameter has to be chosen from a commercially 

available set of pipes consisting of 14 different values. Hence, there is a total of 148 possible solution combinations 

for this network. This study also used maximum velocity Vmax = 2m/s (Todini, 2000) as another constraint.  

In this application, the number of parents = 20, number of initial chromosomes = 8, penalty factor  = 1E05, and 

offset parameter   = 1E06 are used. Figure 3 shows the results obtained by MO-CMA-ES-EP. The blue x-marks 

represent all cadidate solutions while the red circles represent the Pareto optimal solutions obtained by solving 

simultaneously the optimization problems (1) and (7) using the proposed model.  

 
 

Figure 3: Pareto front of cost and network resilience optimization for two-loop network 

Compared with previous studies as reflected in Table 1, the least cost produced by MO-CMA-ES-EP in Column 7 is 

lower than the results produced by Linear Programming LPG (Column 1); GA and ACCL (Columns  2 and 3); and 

is exactly equal to the optimum results obtained from GEO, GANEO, and ACOC (Columns 4, 5, and 6). MO-CMA-

ES-EP produces the optimal result with an acceptable number of function evaluations (NFEs) of 3,670 compared to 

the other approaches as well as compared to the total possible solution combinations (148 = 1.48*109). The NFEs 

has proved the effectiveness of the new proposed approach.  
Table 1: Comparison of alternative solutions for two - loop network 

Reservoir  

Node 

Nodal demand (m3/h)   [100] 
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Authors and 

Methods 

Alperovits and 

Shamir (1977) 

Abebe and Solomatine 

(1998) 
Wu (2001) 

Dijk et al. 

(2008) 

Afshar 

(2009) 
Current study 

LPG 

(1) 

GA 

(2) 

ACCOL 

(3) 

GEO 

(4) 

GANEO 

(5) 

ACOA 

(6) 

CMA-ES-EP 

(7) 

Cost ($) 
497,525 424,000 447,000 419,000 419,000 419,000 419,000 

NFEs ----- 3,381 1,810 7,467 100,000 3,000 3,670 

2. Case study 2: Hanoi water network 

The 34 pipes, 32 nodes network is supplied by a single fixed head source at elevation of 100 m introduced by 

Fujiwara and Khang (1990). The nodal minimum required pressure is determined to be 30m. The set of 

commercially available diameters in inches encompasses [12, 16, 20, 24, 30, 40] and corresponding cost per unit 

length can be implied from: 1.1 x D1.5. The value of Hazen – William friction coefficient CH-W = 130 is also used for 

all pipes. Model coefficients are used in this case including: number of parents = 100, number of initial 

chromosomes = 3400,  = 2E05, and   = 3E07. The maximum velocity, Vmax = 2m/s, was also used as additional 

constraint. 

 

 

 
Figure 4: Hanoi water distribution network 

For analyzing a more complex water distribution network (Hanoi network), Figure 5 shows all representative 

solutions obtained by MO-CMA-ES-EP. The Pareto efficient values for cost and network resilience can be taken 

from the solutions at Pareto front (red circles). It is confirmed that these solutions are also good approximation, 

since the least cost solution for this network of Mi.$ 6.046 is the best solution so far (as shown in Table 2).   
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Figure 5: Pareto front of cost and network resilience optimization for Hanoi network  

Table 2: Comparison of nodal pressure for best solution of the Hanoi water network 

 

 

Node 

Previous studies 

Current Study 
Savic &Walters 

 (1997) 

Abebe & Solomatine 

(1998) 

Cunha & Sousa 

 (1999) 

Perelman et al 

(2009) 

GA1 GA ACCOL SA GA 

NFE \ 16,910 3,055 53,000 \ 12,481 

Cost (Mi.$) 6.073 7 7.8 6.056 6.055 6.046 

 

CONCLUSION 
New method simulation – based multi-objective optimization framework MO-CMA-ES-EP is successfully tested on 

two - loop network and Hanoi water network. The problem is defined here as a multi-objective optimization of initial 

capital cost and network resilience. Using this method, all candidate pipe diameters are analyzed in MO-CMA-ES-

EP. The model is capable making set of pipe diameter automatically vary at every iteration in order to get as many 

Pareto optimal solutions as possible. 

Identified Pareto efficient solutions are validated by comparison with previous studies. With respect to the two-loop 

network, the obtained solution as the same the least cost produced by previous study. When dealing with a more 

complex network, e.g. the Hanoi water network, MO-CMA-ES-EP particularly produces a more economic design 

than those of compared previous state-of-the-art single and multi-objective methods. Thus, it can be concluded that 

the proposed method is able to determine the true Pareto front between the initial capital cost and network resilience.  

In future studies, MO-CMA-ES-EP should be further developed for the application to more complex networks 

including pumps, tanks, and multiple water sources. 
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